Temporal dynamic appearance modeling for online multi-person tracking

نویسندگان

  • Min Yang
  • Yunde Jia
چکیده

Robust online multi-person tracking requires the correct associations of online detection responses with existing trajectories. We address this problem by developing a novel appearance modeling approach to provide accurate appearance affinities to guide data association. In contrast to most existing algorithms that only consider the spatial structure of human appearances, we exploit the temporal dynamic characteristics within temporal appearance sequences to discriminate different persons. The temporal dynamic makes a sufficient complement to the spatial structure of varying appearances in the feature space, which significantly improves the affinity measurement between trajectories and detections. We propose a feature selection algorithm to describe the appearance variations with midlevel semantic features, and demonstrate its usefulness in terms of temporal dynamic appearance modeling. Moreover, the appearance model is learned incrementally by alternatively evaluating newly-observed appearances and adjusting the model parameters to be suitable for online tracking. Reliable tracking of multiple persons in complex scenes is achieved by incorporating the learned model into an online tracking-by-detection framework. Our experiments on the challenging benchmark MOTChallenge 2015 [22] demonstrate that our method outperforms the state-of-theart multi-person tracking algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What Do I See? Modeling Human Visual Perception for Multi-person Tracking

This paper presents a novel approach for multi-person tracking utilizing a model motivated by the human vision system. The model predicts human motion based on modeling of perceived information. An attention map is designed to mimic human reasoning that integrates both spatial and temporal information. The spatial component addresses human attention allocation to different areas in a scene and ...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Multi-Observations Newscast EM for Distributed Multi-Camera Tracking

Visual surveillance in wide areas (e.g. airports) relies on multiple cameras which observe non-overlapping scenes. The focus of this thesis is multi-person tracking, where the task is to maintain a person’s identity when he or she leaves the field of view of one camera and later re-appears at another camera. While current wide-area tracking systems are central systems, we propose to use a distr...

متن کامل

Tracking Humans Using Prior and Learned

Tracking a moving person is challenging because a person’s appearance in images changes significantly due to articulation, viewpoint changes, and lighting variation across a scene. And different people appear differently due to numerous factors such as body shape, clothing, skin color, and hair. In this thesis, a multi-cue tracking technique is introduced that uses prior information about the 2...

متن کامل

Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2016